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Abstract
For the Kac–Wakimoto hierarchy constructed from the principal vertex operator
realization of the basic representation of the affine Lie algebra D(1)

n , we compute
the coefficients of the corresponding Hirota bilinear equations, and verify the
coincidence of these bilinear equations with the ones that are satisfied by
Givental’s total descendant potential of the Dn singularity, as conjectured by
Givental and Milanov (2005 Simple singularities and integrable hierarchies The
Breadth of Symplectic and Poisson Geometry (Prog. Math. vol 232) (Boston:
Birkhäuser) pp 173–201).

PACS number: 02.20.Qs

1. Introduction

The theory on representation of theoretical aspects of soliton equations developed by Date,
Jimbo, Kashiwara, Miwa [1–4, 16] and Kac, Wakimoto [17, 18] plays a significant role in
several research areas of modern mathematical physics. For each affine Lie algebra g, together
with an integrable highest weight representation V of g and a vertex operator construction R
of V, Kac and Wakimoto formulated a hierarchy of soliton equations. These equations can be
written down in terms of Hirota bilinear equations and their super analogue [18]. When g is
the untwisted affinization of a simply laced finite Lie algebra, the Kac–Wakimoto hierarchy
coincides with the corresponding generalized Drinfeld–Sokolov hierarchy defined by Groot,
Hollowood and Miramontes [14, 15]. In particular, if the highest weight representation is the
basic one, and the vertex operator realization is constructed from the principal Heisenberg
subalgebra, then the Kac–Wakimoto hierarchy is equivalent to that of the Drinfeld–Sokolov
hierarchy associated with g and the vertex c0 of its Dynkin diagram [5].

In [10, 11], Givental constructed the total descendant potential for any semisimple
Frobenius manifold [6]. This potential is supposed to satisfy the axioms dictated by the
Gromov–Witten theory, such as the string equation, dilaton equation, topological recursion
relations and Virasoro constraints. Recently, Givental and Milanov [12, 13] showed that the
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total descendant potentials for semisimple Frobenius manifolds associated with the simple
singularities satisfy certain Hirota bilinear (quadratic) equations, and proved that for the An,
D4 and E6 singularities these equations are equivalent to the corresponding Kac–Wakimoto
hierarchies. They also conjectured that this fact is true for all simple singularities.

In this paper we compute explicitly the coefficients of the Kac–Wakimoto hierarchy
constructed from the principal vertex operator realization of the basic representation of the
affine Lie algebra D(1)

n , while these coefficients are implicitly defined in [18], except for
the case n = 4. This computation verifies Givental and Milanov’s conjecture for the Dn

singularity.

2. Kac–Wakimoto hierarchies of ADE type

Let g be an untwisted affine Lie algebra of ADE-type, with rank n, Coxeter number h and
normalized invariant bilinear form (·|·). The set of simple roots and simple coroots are denoted
by {αi}ni=0 and

{
α∨

i

}n

i=0, respectively.
We denote the principal gradation of g as g = ⊕

j∈Z
gj . The Cartan subalgebra of g, i.e.

the 0-component g0, has the following two decompositions:

g0 = h̊ ⊕ Cc ⊕ Cd = h̄ ⊕ Cc ⊕ Cd.

Here, on the one hand, h̊ = ∑n
i=1 Cα∨

i , c is the central element and d is determined by the
constraint

(h̊|d) = 0, (c|d) = 1, (d|d) = 0;
on the other hand, the subspace h̄ is so chosen that the difference of the projections of any
x ∈ g0 onto h̊ and h̄ is given by x̊ − x̄ = h−1(ρ̊∨|x̊)c, where ρ̊∨ is an element of h̊ defined by
the condition

〈αi, ρ̊
∨〉 = 1, i = 1, . . . , n. (2.1)

Let E be the set of exponents of g. For each j ∈ E there exists Hj ∈ gj satisfying

(Hi |Hj) = h δi,−j , [Hi,Hj ] = i δi,−j c. (2.2)

They generate the principal Heisenberg subalgebra s = Cc +
∑

j∈E CHj .
In Kac and Wakimoto’s construction of the hierarchies, it is essential to choose two bases

{vi}, {vi} of g that are dual to each other. These two bases read

{vi}: 1√
h

Hj(j ∈ E), X(r)
m (1 � r � n;m ∈ Z), c, d; (2.3)

{vi}: 1√
h

H−j (j ∈ E), Y
(r)
−m(1 � r � n;m ∈ Z), d, c, (2.4)

such that {
X

(r)
0

}n

r=1,
{
Y

(r)
0

}n

r=1 are two bases of h̄, (2.5)[
Hj,X

(r)
m

] = βr,j̄X
(r)
m+j ,

[
Hj, Y

(r)
−m

] = −βr,j̄ Y
(r)
−m+j , (2.6)(

X
(r)
l

∣∣Y (s)
−m

) = δr,sδl,m, (2.7)

where 0 < j̄ < h is the remainder of j modulo h, and βr,j̄ are some complex numbers which
depend on the choice of the two bases of g.
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Let E+ be the set of positive exponents. A representation of the Heisenberg subalgebra s

on the Fock space C[tj ; j ∈ E+] is given by

c �→ 1, Hj �→ ∂

∂tj
, H−j �→ j tj , j ∈ E+.

This can be lifted to a basic representation L(�0) of g as follows:∑
m∈Z

X(r)
m z−m �→ −h−1

(
ρ̊∨∣∣X̊(r)

0

)
X(r)(t; z),

∑
m∈Z

Y
(r)
−mzm �→ −h−1

(
ρ̊∨∣∣Y̊ (r)

0

)
X(r)(−t; z),

d0 := hd + ρ̊∨ �→ −
∑
j∈E+

j tj
∂

∂tj
,

where X(r)(t; z) (1 � r � n) are the vertex operators

X(r)(t; z) =
⎛
⎝exp

∑
j∈E+

βr,j̄ tj z
j

⎞
⎠

⎛
⎝exp −

∑
j∈E+

βr,−j

jzj

∂

∂tj

⎞
⎠ .

Such a realization of the basic representation L(�0) is called the principal vertex operator
construction, see [17, 18] for details.

Theorem 2.1 [18]. Consider the basic representation of a simply laced affine Lie algebra g

on the Fock space L(�0) = C[tj ; j ∈ E+] constructed as above. Denote by G the Lie group
of the derived algebra g′ of g. A nonzero τ ∈ L(�0) lies in the orbit G · 1 if and only if τ

satisfies the following hierarchy of Hirota bilinear equations:⎛
⎝−2h

∑
j∈E+

j yjDj +
n∑

r=1

gr

∑
m�1

SE
m(2βr,j̄ yj )S

E
m

(
−βr,−j

j
Dj

)⎞
⎠

⎛
⎝exp

∑
j∈E+

yjDj

⎞
⎠ τ · τ = 0.

(2.8)

Here gr = (
ρ̊∨∣∣X̊(r)

0

)(
ρ̊∨∣∣Y̊ (r)

0

)
, SE

m are the elementary Schur polynomials of g defined by
exp

∑
j∈E+

yj z
j = ∑

m�0 SE
m(yj )z

m and Dj are the Hirota bilinear operators defined by

Dj f · g = ∂
∂u

∣∣
u=0

f (tj + u)g(tj − u).

Kac and Wakimoto explicitly gave the coefficients gr, βr,j for the affine Lie algebras A(1)
n ,

D
(1)
4 and E

(1)
6 in [18], however, these coefficients remain implicit for other affine Lie algebras.

We proceed to compute them for the affine Lie algebra D(1)
n in the next section.

3. Bilinear equations for D(1)
n

Let g be an affine Lie algebra of type D(1)
n . In this section we want to construct the two

bases (2.3), (2.4) of g, and then write down the Kac–Wakimoto bilinear equations (2.8). Our
result implies that Givental and Milanov’s conjecture on the total descendant potential of Dn

singularity is true.
Let us consider the corresponding simple Lie algebra first. The simple Lie algebra g̊ of

type Dn possesses the following 2n-dimensional matrix realization [5]:

g̊ = {A ∈ C
2n×2n | A = −SAT S}, S =

n∑
i=1

(−1)i−1(eii + e2n+1−i,2n+1−i ). (3.1)

3
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Here ei,j is the 2n × 2n matrix that takes value 1 at the (i, j)-entry and zero elsewhere, and
AT = (al+1−j,k+1−i ) for any k × l matrix A = (aij ). In this matrix realization, a set of Weyl
generators can be chosen as

ei = ei+1,i + e2n+1−i,2n−i (1 � i � n − 1), en = 1
2 (en+1,n−1 + en+2,n), (3.2)

fi = ei,i+1 + e2n−i,2n+1−i (1 � i � n − 1), fn = 2(en−1,n+1 + en,n+2), (3.3)

hi = −ei,i + ei+1,i+1 − e2n−i,2n−i + e2n+1−i,2n+1−i (1 � i � n − 1), (3.4)

hn = −en−1,n−1 − en,n + en+1,n+1 + en+2,n+2. (3.5)

Besides them, we also need the following elements in g̊:

e0 = 1
2 (e1,2n−1 + e2,2n), f0 = 2(e2n−1,1 + e2n,2), (3.6)

h0 = e1,1 + e2,2 − e2n−1,2n−1 − e2n,2n. (3.7)

Recall that the normalized Killing form (A|B) = 1
2 tr(AB) and the Coxeter number h = 2n−2

of g̊. We therefore denote the Z/hZ -principal gradation of g̊ as

g̊ =
⊕

j∈Z/hZ

g̊j ;

then we have ei ∈ g̊1̄, fi ∈ g̊−1, hi ∈ g̊0̄ for i = 0, . . . , n.
Let � = ∑n

i=0 ei and s̊ be the centralizer of � in g̊. Then s̊ is a Cartan subalgebra of g̊.
We fix a basis {Tj | j ∈ I } of s̊ as

Tj = �j, j = 1, 3, . . . , 2n − 3,

T(n−1)′ = √
n − 1κ

(
en,1 − 1

2en+1,1 − 1
2en,2n + 1

4en+1,2n

+ (−1)n
(
e2n,n+1 − 1

2e2n,n − 1
2e1,n+1 + 1

4e1,n

))
,

where κ = 1 (resp.
√−1) when n is even (resp. odd), and I is the set of exponents of g̊ given

by

I = {1, 3, 5, . . . , 2n − 3} ∪ {(n − 1)′}.
Here (n − 1)′ indicates that when n is even, the multiplicity of the exponent n − 1 is 2. These
matrices Tj belong to g̊j , respectively, and satisfy

(Ti |Th−j ) = (n − 1)δi,j .

To construct the desired bases, we need the root space decomposition of g̊ with respect to
s̊. Note that the set of eigenvalues of � is

{ω ∈ C | ωh = 1} ∪ {0},
in which the multiplicity of 0 is 2. We choose the eigenvectors ηω, η0, η0′ associated with
eigenvalues ω, 0, respectively, as follows:

ηω = (
1
2 , ω−1, . . . , ω−(n−1), 1

2ωn−1, ωn−2, . . . , ω, 1
)t

,

η0 = (− 1
2ψ1 + ψ2n

)
+ κ−1

(
ψn − 1

2ψn+1
)
,

η0′ = (− 1
2ψ1 + ψ2n

) − κ−1(ψn − 1
2ψn+1

)
,

where ψi is the 2n-dimensional column vector with the ith entry being 1 and all other entries
being zero, and ·t is the usual transposition of matrices. These eigenvectors give a common
eigenspace decomposition for Tj (j ∈ I ):

Tjηα = αjηα, j = 1, 3, . . . , 2n − 3,

T(n−1)′ηα = ((−1)n−1δα,0 + (−1)nδα,0′)
√

n − 1ηα.

4
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Introduce a map σ : C
2n×2n → g̊, A �→ A − SAT S, and define the 2n × 2n matrices

A(α,β) = σ
(
ηαηT

−β

)
,

where α, β are eigenvalues of �. These matrices satisfy

[Tj , A(α,β)] = (αj + βj )A(α,β), j = 1, 3, . . . , 2n − 3,

[T(n−1)′ , A(α,β)] = ((−1)n(−δα,0 + δα,0′) + δβ,0 − δβ,0′)
√

n − 1Aα,β,

from which one can obtain the root space decomposition of g̊ with respect to s̊.
Now denote by A(α,β),j the homogeneous components of A(α,β) in g̊j , and fix ω =

exp(2π i/h). One can verify the following relations

(A(1,ωr ),0|A(−1,−ωs),0) = −hδr,s,

(A(1,ωr ),0|A(−1,α),0) = 0,

(A(1,α),0|A(−1,β),0) = 2(1 − δα,β),

where 1 � r, s � n − 2 and α, β ∈ {0, 0′}. According to these relations, we choose two bases
of g̊:

{Tj | j ∈ I } ∪ {
X̃(r)

m

∣∣ r = 1, . . . , n; m ∈ Z/hZ
}
,

{Tj | j ∈ I } ∪ {
Ỹ (r)

m

∣∣ r = 1, . . . , n; m ∈ Z/hZ
}
,

1 � r � n − 2 r = n − 1 r = n

X̃(r)
m : 1√

h
A(1,ωr ),m

1√
2
A(1,0),m

1√
2
A(1,0′),m

Ỹ (r)
m : − 1√

h
A(−1,−ωr ),m

1√
2
A(−1,0′),m

1√
2
A(−1,0),m

(3.8)

The above two bases of g̊ help us to construct a pair of dual bases (2.3), (2.4) of the affine
Lie algebra g that satisfy (2.5)–(2.7). We use the principal realization of g [17]:

g =
⊕
m∈Z

λmg̊m̄ ⊕ Cc ⊕ Cd.

Note that the set of exponents of g is E = I + h Z, and the principal Heisenberg subalgebra is
generated by

Hj =
√

2λjTj̄ , j ∈ E.

The two bases (2.3), (2.4) of g can be chosen as

1√
h

Hj ,X
(r)
m = λmX̃

(r)
m̄ , c, d;

1√
h

H−j , Y
(r)
−m = λ−mỸ

(r)

−m
, d, c,

with the coefficients βr,j (j ∈ I ) that appear in (2.6) given by

βr,j =

⎧⎪⎨
⎪⎩

√
2(1 + ωrj ), r = 1, 2, . . . , n − 2, j �= (n − 1)′,√
2, r = n − 1, n, j �= (n − 1)′,√
2n − 2(δr,n−1 − δr,n), j = (n − 1)′.

(3.9)

To write down the Kac–Wakimoto bilinear equations (2.8), we still need to compute the
constants gr = (

ρ̊∨∣∣X̊(r)
0

)(
ρ̊∨∣∣Y̊ (r)

0

)
. Note that in the principal realization of g, the Weyl

generators are given by

ẽi = λei, f̃ i = λ−1fi, α∨
i = hi +

c

h
, i = 0, . . . , n;

5
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so we have

(
ρ̊∨∣∣X̊(r)

0

) =
(

ρ̊∨
∣∣∣∣∣X(r)

0 +
c

h

n∑
i=1

ai

)
=

n∑
i=1

ai,

where ai are the coefficients in the following linear expansion:

X
(r)
0 =

n∑
i=1

aihi =
n∑

i=1

ai

(
α∨

i − c

h

)
∈ g̊0.

According to the realization (3.2)–(3.5), given any

diag(b1, b2, . . . , b2n) =
n∑

i=1

aihi ∈ g̊0,

the summation
∑n

i=1 ai reads

n∑
i=1

ai = −
n−1∑
i=1

(n − i)bi .

By using this formula, we obtain

gr =

⎧⎪⎪⎨
⎪⎪⎩

n − 1

2

2 − ωr − ω−r

2 + ωr + ω−r
, r = 1, . . . , n − 2,

(n − 1)2

2
, r = n − 1, n.

(3.10)

Proposition 3.1. The constants gr and βr,j in the Kac–Wakimoto hierarchy of bilinear
equations (2.8) for D(1)

n are given by (3.9) and (3.10).

Note that the values βr,j depend on the choice of the dual bases (2.3), (2.4). However, it
is easy to see that the constants gr are independent of the choice of such bases.

In [13], Givental and Milanov proved that the total descendant potential for semisimple
Frobenius manifolds associated with a simple singularity satisfies the following hierarchy of
Hirota bilinear equations:

resz=0z
−1

n∑
r=1

gr e
∑

j∈E+ 2βr,j̄ zj yj e− ∑
j∈E+ βr,−j z−j ∂yj

/j
τ (t + y)τ(t − y)

=
⎛
⎝2h

∑
j∈E+

j yj ∂yj
+

nh(h + 1)

12

⎞
⎠ τ(t + y)τ(t − y), (3.11)

where the coefficients βr,j are the same as in (2.8), and gr are given explicitly in [13]. By
comparing the constants gr (3.10) with those in [13], we obtain the following corollary.

Corollary 3.2. The hierarchy (3.11) for the Dn singularity coincides with the Kac–Wakimoto
hierarchy of type D(1)

n associated with the basic representation and its principal vertex operator
construction.

Namely, we conform Givental and Milanov’s conjecture [13] for the case Dn.

6
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4. Concluding remarks

We study in [19] the tau structure of the Drinfeld–Sokolov hierarchy associated with the Kac–
Moody algebra D(1)

n and the zeroth vertex of its Dynkin diagram following the approach of [7].
So we can define the tau function by using the tau symmetry of the Hamiltonian structures,
and establish the equivalence between this definition of the tau function for this hierarchy and
that given by Hollowood and Miramontes [15]. Based on the tau structure, we plan to show
that this Drinfeld–Sokolov hierarchy coincides with the biHamiltonian integrable hierarchy
constructed according to the axiomatic scheme developed by Dubrovin and Zhang [7, 8] on
the formal loop space of the semisimple Frobenius manifold associated with the Dn-type Weyl
group. This assertion together with the result of this paper would imply that Givental’s total
descendant potential associated with the Dn singularity is a tau function of Dubrovin and
Zhang’s hierarchy.

While we prepared to do an analogous computation for the cases E7, E8 of Givental
and Milanov’s conjecture [13], we learned from [9] that Frenkel, Givental and Milanov have
obtained a proof of this conjecture in general. We hope, however, that this short paper might
be helpful to a better understanding of the relationship between Givental’s total descendant
potentials and integrable systems.
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vertex operators.
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[14] de Groot M F, Hollowood T J and Miramontes J L 1992 Generalized Drinfeld-sokolov hierarchies Commun.
Math. Phys. 145 57–84

[15] Hollowood T J and Miramontes J L 1993 Tau-functions and generalized integrable hierarchies Commun. Math.
Phys. 157 99–117

[16] Jimbo M and Miwa T 1983 Solitons and infinite-dimensional Lie algebras Publ. Res. Inst. Math. Sci.
19 943–1001

[17] Kac V G 1990 Infinite-Dimensional Lie Algebras 3rd edn (Cambridge: Cambridge University Press)
[18] Kac V G and Wakimoto M 1989 Exceptional hierarchies of soliton equations Theta Functions—Bowdoin 1987,

Part 1 (Brunswick, ME, 1987) Proc. Sympos. Pure Math. vol 49, Part 1 (Providence, RI: Amer. Math. Soc.)
pp 191–237

[19] Liu S Q, Wu C Z and Zhang Y 2009 Tau structures of the Drinfeld–Sokolov hierarchies of D-type (in preparation)
[20] Frenkel E, Givental A and Milanov T 2009 Soliton equations, vertex operators, and simple singularities

arXiv:0909.4032

8

http://dx.doi.org/10.1007/BF02099281
http://dx.doi.org/10.1007/BF02098021
http://dx.doi.org/10.2977/prims/1195182017
http://www.arxiv.org/abs/0909.4032

	1. Introduction
	2. Kac--Wakimoto hierarchies of ADE type
	3. Bilinear equations
	4. Concluding remarks
	Acknowledgments
	References

